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Abstract. We test the renormalization of Wilson operators and the Mandelstam–Leibbrandt gauge in the
case when the sides of the loop are parallel to the n, n∗ vectors used in the M–L gauge. Graphs which
in the Feynman gauge are free of ultra-violet divergences, in the M–L gauge show double divergences and
single divergences with non-local Si and Ci functions. These non-local functions cancel out when we add
all graphs together and the constraints of gauge invariance are satisfied. In AppendixC we briefly discuss
the problems of the M–L gauge for loops containing spacelike lines.

1. Introduction

The aim of this research is to test the Mandelstam–
Leibbrandt gauge, which is the best form of the lightcone
gauge with the condition n · A = 0, n2 = 0 (where n is a
vector used to define the gauge).

The Wilson operator is defined as

W = TrP exp
(

−ig
∫

C

A · dx
)

, (1)

where C is a closed curve, P denotes operator and matrix
ordering along C, and the non-abelian gauge field Aµ is
a matrix in some representation R of the gauge group G.
The path-ordered phase factors (1) are gauge-invariant ob-
jects and therefore an ideal laboratory for testing different
gauges. Also they are better coordinates in a non-abelian
theory than are the conventional vector gauge field ma-
trices Aµ(x), even though they are functions of all closed
paths. The gauge-variant gauge fields greatly overdescribe
the observable dynamics. The operators (1) are in contrast
gauge-invariant, more precisely describe the dynamics and
satisfy gauge-invariant equations. The hope has therefore
arisen that the W ′s can replace the A′s as fundamental
dynamical variables, and correspondingly that the loop
functions (Wilson operators) can replace the Green’s func-
tions.

However, the loop functions are perturbatively even
more divergent than the Green’s functions [1]. Therefore,
to make any sense out of the above program, one must
renormalize. This has already been done in Lorentz gauges
[2,3]. In this paper we discuss the renormalization of Wil-
son operators in the Mandelstam–Leibbrandt light-cone
gauge which became popular with the revival and inten-
sive research of string theories. The complexity of the ex-
plicit calculations of individual graphs to order g4 is a
hint to the usefulness of the light-cone gauge in perturba-
tive QCD for itself. Apart from that, in AppendixC we
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explain why strict application of dimensional regulariza-
tion in the light-cone gauge is not possible in the case of
spacelike and/or timelike lines.

It was noted [1] that if the Wilson loop contains a
straight lightlike segment, charge renormalization does not
work in a simple graph-by-graph way, but does work when
certain graphs are added together. In the M–L gauge,
renormalization is even more complicated. We shall show
to order g4 in perturbation theory that W in the M–L
gauge obeys multiplicative renormalizability as required
in [1],

WR(AR; gR) = Z(ε)WB(AB; gB, ε), (2)

where the suffices R and B denote renormalized and bare
quantities, and dimensional regularization with d = 4 − ε
is used. The relationship between gB and gR and between
AR and AB should be the same as in ordinary perturbation
theory. Z(ε) is determined from the vacuum expectation
value 〈W 〉

〈WR(gR)〉 = Z(ε)〈WB(gB, ε)〉. (3)

However, the divergences of the individual graphs are not
of the short distance nature and are non-local on the curve
C. They are grouped into four tensors n∗

βn
∗
ρ, nβn

∗
ρ, n

∗
βnρ

and nβnρ. There are no transverse divergences of the type
e.g. nβPρ, PβPρ (we use the decomposition of the mo-
mentum pρ = (1/2)n∗

ρp+ + (1/2)nρp− + Pρ), nor gβρ di-
vergences, as argued in AppendixA.

Let the divergent part of the amplitude for the emis-
sion of two real gluons in momentum space be

Mβρ = Anβnρ + Bnβn
∗
ρ + Cn∗

βnρ + Dn∗
βn

∗
ρ,

where M is the coefficient of the two fields when we expand
W in terms of the fields, and n and n∗ are the lightlike
vectors used to define the gluon propagator in the M–L
gauge

Gβρ = (k2 + iη)
{

−gβρ +
nβkρ + nρkβ

n · k + iωn∗ · k
}

. (4)
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The polarization vectors should satisfy

p · e = 0, q · f = 0,

and can be chosen to satisfy

n · e = n · f = 0,

e.g.

eβ =
p+n∗

β − p−nβ − 2pβ

|4p+p−|1/2 ,

fρ =
q+n∗

ρ − q−nρ − 2qρ

|4q+q−|1/2 , (5)

for p and q on shell, respectively. The other independent
polarization vector which is perpendicular to P , n and n∗
and counterpart to e, gives zero when contracted into Mβρ

and so plays no role in this paper. Of course, there is a
counterpart of f as well.

We have four identities following from gauge invari-
ance, which the amplitude should satisfy.
(a) Mβρeβfρ should be the same as the Feynman gauge
when the external momenta p and q are on shell,
(b) Mβρeβqρ = 0 for p on shell, Mβρpβfρ = 0 for q on
shell,
(c)

Mβρpβqρ = 0. (6)

These equations allow us to redefine the vectors (5) by

e′
β = p−nβ − p+n∗

β ,

f ′
ρ = q−nρ − q+n∗

ρ,

and the tensor structure (4) which satisfies (b) and (c) can
be written in the form

Mβρ = e′
βf

′
ρM. (7)

The form (7) will in Sect. 5 be crucial to show that non-
local divergences must cancel. (a), (b) and (c) impose the
constraint on (4) of

p+q+A + p+q−B − p−q+C − p−q−D = 0,
p+q+A − p+q−B + q+p−C − p−q−D = 0,
p+q+A + p+q−B + p−q+C + p−q−D = 0,

i.e.

q+A + q−B = 0, (8)

and fix all the ratios of A : B : C : D. The answers that we
find in (15), (22) and (32) confirm this prediction and are
invariant under n → cn, n∗ → cn∗, p+ → cp+, p− → cp−
for any constant c.

A, B, C and D turn out to be local, although from
the example of the self-energy graph [4], one might have
expected non-local divergences to occur with the Wilson
loop. If we take a self-energy part and try to derive an

�
q; d; �

p; b; � �
Fig. 1. Wilson operator at order g4 with two real gluons and
one 3-gluon vertex. The sides of the loop are along the lightlike
vectors used to define the M–L prescription, n∗ of length L and
n of length T . The two graphs of the A-set which contribute
to the n∗n∗ sector have their symmetric counterparts

on-shell physical entity, we get zero (we take Sβρ(p), put
p2 = 0, multiply by eβeρ where e is a polarization vector
satisfying p · e = 0). Therefore, we cannot deduce much
by arguing that physical things are gauge-invariant – we
get just 0 = 0. But, for the Wilson loop, we do not get
zero if we put p2 = q2 = 0 and multiply by polarization
vectors. So the gauge-independence argument does give
some information. As the Feynman gauge non-local diver-
gences cancel [1], (a), (b) and (c) explain why there are
no non-local divergences in the M–L Wilson operator.

The abelian CRCR part obeys the factorization the-
orem [5,6]. Therefore in this work we shall concentrate
only on the non-abelian CGCR part of the graphs, where
CR and CG are the Casimirs for the representation used
to define the Wilson loop and the gluons. In the following
sections we list final results for the amplitude Mβρ to order
g4 after the decomposition in (4). The graphs are grouped
into sets according to their topological equivalence.

2. The n∗
βn∗

ρ sector of WB

We list the final results for groups of graphs shown in
the figures. The multiplication by the overall factor Cβρ

is understood for each graph.

Mβρ = CβρM,

Cβρ =
2
ε
g4CGTr(tbtd)n∗

βn
∗
ρπ

2−(ε/2)(2π)−n
.

We denote the frequent non-local functions which appear
in all equations by

Ci(x) =
∫ x

0

cos t − 1
t

dt,

Si(x) =
∫ x

0

sin t

t
dt. (9)

A-set

The graphs contributing to the A-set are shown in Fig. 1.
There are also graphs with p and q interchanged. Then
the ultra-violet divergent part of the graphs in Fig. 1 is

(M1 + M2)(A) = − 1
p−q−

(e−ip+T + e−iq+T )(e−iq−L − 1)
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Fig. 2. B-set of graphs

×{2(e−ip−L − 1) + (e−ip−L − 1)Ci(p−L)

+i(e−ip−L + 1)Si(p−L)}. (10)

B-set

The B-graphs are shown in Fig. 2. Addition of symmetric
graphs is understood.

(M1 + M2 + ... + M6)(B) = (e−iTr+ + 1)

×
{

2
p−q−

(e−ip−L − 1)(e−iq−L − 1) +
(

2
p−q−

+
2

p−r−

)
×[(e−ir−L + 1)Ci(r−L) + i(e−ir−L − 1)Si(r−L)]

−
(

2
p−q−

+
2

p−r−

)
×[(e−ir−L + 1)Ci(q−L) + i(e−ir−L − 1)Si(q−L)]

−
(

2
p−r−

)
×[(e−ir−L + 1)Ci(p−L) + i(e−ir−L − 1)Si(p−L)]

−
(

1
p−q−

)
×(e−iq−L + 1)[(e−ip−L + 1)Ci(p−L)

+ i(e−ip−L − 1)Si(p−L)]
}

where

r = p + q. (11)

C-set

The C-graphs are shown in Fig. 3.

(M1 + M2 + M3 + M4)(C) =
2

q−r−
(e−iTp+ + e−iTq+)

×{(e−ir−L + 1)

×[Ci(q−L) − Ci(p−L)] + i(e−ir−L − 1)

	q p 

��

Fig. 3. C-set

Æ
��

Fig. 4. D-set

×[Si(q−L) − Si(p−L)]}
+

2
q−r−

(e−iTr+ + 1)

×[(e−ir−L + 1)Ci(r−L) + i(e−ir−L − 1)Si(r−L)]

− 1
q−p−

(e−iTp+ − 1)(e−iTq+ − 1)(e−iLq− + 1)

×[(e−ip−L + 1)Ci(p−L) + i(e−ip−L − 1)Si(p−L)]

+
(

iπ
p−q−

)
×(e−iTp+ + 1)(e−iTq+ − 1)(e−ip−L − 1)(e−iq−L + 1)

−
(

2iπ
q−r−

)
×(e−iTp+ + 1)(e−iTq+ − 1)(e−ir−L − 1). (12)

Again we have to add the symmetric graphs with p and q
interchanged.

D-set

The complete set of D-graphs (including symmetric
graphs) is shown in Fig. 4.

(M1 + M2 + ... + M8)(D) = − 2
p−q−

(e−iTr+ + 1)

×{2(e−ir−L + 1)Ci(r−L) + 2i(e−ir−L − 1)Si(r−L)

−(e−ip−L + 1)

×[(e−iq−L + 1)Ci(q−L) + i(e−iq−L − 1)Si(q−L)]

−(e−iq−L + 1)

×[(e−ip−L + 1)Ci(p−L) + i(e−ip−L − 1)Si(p−L)]}
−2

(
1

q−r−
− 1

p−r−

)
(e−iTp+ + e−iTq+)



604 A. Andraši: Renormalization of Wilson operators in the light-cone gauge

�q

p

�p

q

�
p

q �
q

p

Fig. 5. E-set

×{(e−ir−L + 1)[Ci(q−L) − Ci(p−L)]

+i(e−ir−L − 1)[Si(q−L) − Si(p−L)]}
− 2
p−q−

(e−iTp+ + e−iTq+)

×[(e−iq−L + 1)Ci(q−L) + i(e−iq−L − 1)Si(q−L)]

− 2
p−q−

(e−iTp+ + e−iTq+)

×[(e−ip−L + 1)Ci(p−L) + i(e−ip−L − 1)Si(p−L)]

− 2
p−q−

(e−iTp+ + e−iTq+)(e−ip−L − 1)

×[Ci(q−L) − iSi(q−L)]

− 2
p−q−

(e−iTp+ + e−iTq+)(e−iq−L − 1)

×[Ci(p−L) − iSi(p−L)]

− 2iπ
p−q−

(e−iTp+ − e−iTq+)(e−iq−L − e−ip−L)

−2iπ
(

1
p−r−

− 1
q−r−

)
×(e−ir−L − 1)(e−iTq+ − e−iTp+). (13)

E-set

The E-set is shown in Fig. 5.

(M1 + ... + M4)(E) = −4(e−iTr+ + 1)

×
{(

1
p−q−

)
×[(e−ir−L + 1)Ci(r−L) + i(e−ir−L − 1)Si(r−L)]

−
(

1
q−r−

)
×[(e−ir−L + 1)Ci(p−L) + i(e−ir−L − 1)Si(p−L)]

−
(

1
p−r−

)
× [(e−ir−L + 1)Ci(q−L) + i(e−ir−L − 1)Si(q−L)]

}
. (14)

The complete sum of all the graphs contributing to the
n∗n∗ sector is very simple:

Sβρ(n∗n∗) =
8
ε
g4CGTr(tbtd)n∗

βn
∗
ρπ

2−(ε/2)(2π)−4

�p
q

�q
p

�p

q

Fig. 6. Graphs with two 3-gluon vertices and a graph with the
4-gluon vertex which contribute to the nn sector of the Wilson
operator at order g4

× 1
p−q−

(e−iTq+ − 1)(e−iTp+ − 1)

× (e−iq−L − 1)(e−ip−L − 1)

=
8
ε
g2CGπ2(2π)−4

Bβρ(n∗n∗), (15)

where Bβρ(n∗n∗) denotes the Born term which is in the
n∗n∗ sector only. The non-local functions have cancelled.
This result alone does not prove renormalizability as the
field renormalization matrix in the lightcone gauge mixes
all three sectors.

3. The nβnρ sector of WB

Again we list the final results, but here the overall factor
is

C ′
βρ =

2
ε
g4CGTr(tbtd)nβnρπ

2−(ε/2)(2π)−n 1
q+p+

,

Mβρ = C ′
βρM. (16)

G2-set

The sum of the three graphs of the G2-set shown in Fig. 6
is

M(G2) = −8
ε
(e−ir−L + 1)(e−iTp+ − 1)(e−iTq+ − 1)

−2(e−iTp+ − 1)(e−iTq+ − 1){(e−ir−L + 1)
×[Ci(r−L) + 2 ln(TLµ2) + iπ]

+i(e−ir−L − 1)Si(r−L)}
−2(e−iTq+ + e−iTp+){(e−ir−L + 1)
×[Ci(r−L) − Ci(q−L) − Ci(p−L)]

+i(e−ir−L − 1)
×[Si(r−L) − Si(q−L) − Si(p−L)]}. (17)
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�
q

p �
Fig. 7. G1-set of graphs. Graphs with one 3-gluon vertex which
contribute to the nn sector

�
q

p

�
��

Fig. 8. Same as Fig. 7

��
Fig. 9. Left and right graphs with two 3-gluon vertices in the
G(L+R)-set which contribute to the nn sector

G1-set

The G1-set of graphs are the graphs with one 3-gluon ver-
tex. There are two groups of such graphs. The two graphs
shown in Fig. 7 give

Ma(G1) = (e−iTp+ − 1)(e−iTq+ − 1)(e−iq−L + 1)

×{
(e−ip−L + 1)

×
[
Ci(p−L) + 2γ +

4
ε

+ iπ + 2 ln(TLµ2)
]

+ i(e−ip−L − 1)Si(p−L)
}
. (18)

Of course the graphs with p and q interchanged must be
added. The graphs in Fig. 8 give

M b(G1) = (e−iTp+ − 1)(e−iTq+ − 1)(e−iq−L − 1)

×{2(e−ip−L − 1) + (e−ip−L − 1)Ci(p−L)

+i(e−ip−L + 1)Si(p−L)}. (19)

Again there is a symmetric set of graphs with p and q
interchanged.

G(L+R)-set

Adding the symmetric graphs to Fig. 9, the total sum of
the four graphs is

M(G(L + R)) = −2(e−iTr+ + 1){(e−ir−L + 1)

 
p

q

!
q

p

Fig. 10. G0-set of graphs in the nn sector

"
q

p #
Fig. 11. The A-set of graphs which contribute to the nβn∗

ρ

sector

× [Ci(p−L) + Ci(q−L) − Ci(r−L)]

+ i(e−ir−L − 1)
× [Si(p−L) + Si(q−L) − Si(r−L)]}. (20)

G0-set

Figure 10 gives

M(G0) = −8
ε
(e−iTp+ − 1)(e−iTq+ − 1)(e−iq−L + e−ip−L)

× (µ2TL)
ε/2

(
1 + γ

ε

2
+

iπε
4

)
. (21)

The sum of all the graphs contributing to the nn sector is

Sβρ(nn) =
8
ε
(e−iTp+ − 1)(e−iTq+ − 1)

× (e−ip−L − 1)(e−iq−L − 1)
(

1
q+p+

)
× g4CGTr(tbtd)nβnρπ

2−(ε/2)(2π)−4

=
8
ε
g2CGπ2(2π)−4

Bβρ(nn), (22)

where Bβρ(nn) is the g2 term for the nn sector of WB
(gB, ε).

4. The nβn∗
ρ sector of WB

The final results for the nρn
∗
β sector we get from nβn

∗
ρ by

the change p, b, β into q, d, ρ. The overall factor for all the
graphs in this sector is

C ′′
βρ =

2
ε
g4CGTr(tbtd)nβn

∗
ρπ

2−(ε/2)(2π)−n
,

Mβρ = C ′′
βρM. (23)
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$
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q

%
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Fig. 12. The A′-set of graphs

(
q

p )
*+
,-

Fig. 13. B-set of graphs in the nβn∗
ρ sector

A-set

The graphs in Fig. 11 give

M(A) = (e−iTq+ + e−iTp+)(e−iq−L − 1)
(

1
p+q−

)
× {2(e−ip−L − 1) + (e−ip−L − 1)Ci(p−L)

+ i(e−ip−L + 1)Si(p−L)}. (24)

A′-set

The A′-set is presented in Fig. 12.

M(A′) = −(e−iTp+ − 1)(e−iTq+ − 1)

× (e−ip−L − 1)
(

1
p+q−

)
× {

2(e−iq−L − 1) + (e−iq−L − 1)Ci(q−L)

+ i(e−iq−L + 1)Si(q−L)
}
. (25)

B-set

The B-set is shown in Fig. 13.

M(B) = −(e−iTr+ + 1)

{
2

p+q−
(e−ip−L − 1)(e−iq−L − 1)

.q p /
01

Fig. 14. C-set of graphs

+
(

2
p+q−

+
2

p+r−

)
× [(e−ir−L + 1)Ci(r−L) + i(e−ir−L − 1)Si(r−L)]

−
(

2
p+q−

+
2

p+r−

)
× [(e−ir−L + 1)Ci(q−L) + i(e−ir−L − 1)Si(q−L)]

+
(

2
p+r−

)
× [(e−ir−L + 1)Ci(p−L) + i(e−ir−L − 1)Si(p−L)]

−
(

1
p+q−

)
× (e−iq−L + 1)[(e−ip−L + 1)Ci(p−L)

+ i(e−ip−L − 1)Si(p−L)]

}
. (26)

C-set

Graphs grouped into the C-set are shown in Fig. 14.

M(C) =
2

p+q−

[
2
ε

+ ln(TLµ2) + γ

]
(e−iTp+ − 1)

× (e−iTq+ − 1)(e−ip−L − 1)(e−iq−L − 1)

+ 2(e−iTr+ + 1)
(

1
q−p+

+
1

r−p+

)
× {(e−ir−L + 1)Ci(r−L)

+ i(e−ir−L − 1)Si(r−L)}
− 2(e−iTp+ + e−iTq+)

(
1

q−p+
+

1
r−p+

)
× {(e−ir−L + 1)Ci(q−L)

+ i(e−ir−L − 1)Si(q−L)}
+

{
2

r−p+
(e−iTp+ + e−iTq+)

− 1
q−p+

(e−iTr+ + 1)(e−iq−L + 1)

+
1

q−p+
(e−iTp+ + e−iTq+)(e−iq−L − 1)

}
× {Ci(p−L) − iSi(p−L)}
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2
p

q 3
Fig. 15. C′-set

45
67

Fig. 16. D-set

+
{

2
r−p+

e−ir−L(e−iTp+ + e−iTq+)

− 1
q−p+

e−ip−L(e−iq−L + 1)(e−iTr+ + 1)

− 1
q−p+

e−ip−L(e−iq−L − 1)(e−iTp+ + e−iTq+)
}

× {Ci(p−L) + iSi(p−L)}
+

iπ
q−p+

(e−iTp+ − 1)(e−iTq+ − 1)

× (e−ip−L − 1)(e−iq−L − 1) − 2iπ
r−p+

(e−iTp+ − 1)

× (e−iTq+ + 1)(e−ir−L − 1). (27)

C′-set

The two graphs of the C′-set in Fig. 15 give

M(C′) =
1

q−p+
(e−iTp+ − 1)(e−ip−L + 1)

× {(e−iTq+ − 1)[(e−iq−L + 1)Ci(q−L)

+ i(e−iq−L − 1)Si(q−L)] − 3iπ(e−iq−L − 1)}. (28)

D-set

The D-set is shown in Fig. 16.

M(D) = − 2
q−p+

[
2
ε

+ ln(TLµ2) +
iπ
2

+ γ

]
× (e−iTp+ − 1)(e−iTq+ − 1)

× (e−ip−L − 1)(e−iq−L − 1)

− 2
q−p+

(e−iTp+ − 1)(e−iTq+ − 1)(e−ip−L + 1)

8p
q

9q
p

:p

q

Fig. 17. E-set

;<
=>

Fig. 18. F-set of graphs which contribute to the nβn∗
ρ sector

× {
(e−iq−L + 1)Ci(q−L)

+ i(e−iq−L − 1)
(
Si(q−L) − π

2

)}
+

2iπ
q−p+

× (e−iTp+ − 1)(e−ip−L + 1)(e−iq−L − 1). (29)

E-set

The E-set contains graphs with two 3-gluon vertices and
the graph with the 4-gluon vertex spanning across the
loop. They are shown in Fig. 17.

M(E) = − 2
p+r−

{(e−iTr+ + 1)

× [(e−ir−L + 1)Ci(r−L) + i(e−ir−L − 1)Si(r−L)]

+ (e−iTp+ + e−iTq+)

× [(e−ir−L + 1)(Ci(p−L) − Ci(q−L))

+ i(e−ir−L − 1)(Si(p−L) − Si(q−L))]

− iπ(e−ir−L − 1)(e−iTq+ + 1)(e−iTp+ − 1)}. (30)

F-set

The four graphs of the F-set are shown in Fig. 18. Of
course, there are also symmetric graphs with p and q in-
terchanged. The complete sum of eight graphs amounts
to

M(F) =
2

p+r−
(e−iTr+ + 1)
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× {(e−ir−L + 1)[Ci(p−L) − Ci(q−L) + Ci(r−L)]

+ i(e−ir−L − 1)
× [Si(p−L) − Si(q−L) + Si(r−L)]}. (31)

The total sum for the nn∗ sector is

Sβρ(nn∗) = −8
ε
g4CGTr(tbtd)nβn

∗
ρπ

2−(ε/2)(2π)−n

× 1
p+q−

(e−iTp+ − 1)(e−iTq+ − 1)

× (e−ip−L − 1)(e−iq−L − 1)

− 8
ε
g4CGTr(tbtd)nρn

∗
βπ

2−(ε/2)(2π)−n

× 1
q+p−

(e−iTp+ − 1)(e−iTq+ − 1)

× (e−ip−L − 1)(e−iq−L − 1). (32)

This is again proportional to the g2 term with the same
factor 8/ε as in (15) and (22).

5. Discussion

We are now going to explain how (2) works out to order
g4. The field renormalization matrix in the M–L gauge is
[8–10], in momentum space, where A(p) is the gluon field
in momentum space,

AB
β (p) =

(
1 +

11
6
c

)

×
[
gβγ − cnβ(n∗

γ − n∗ · p
n · p + iηn∗ · pnγ)

]
AγR(p)

= zβγA
γR(p),

where

c =
g2
R

8π2ε
CG,

and the coupling constant renormalization is

gB =
(
1 − 11

6
c

)
gR. (33)

On the right hand side (2) contains various sorts of fourth
order terms:
(a) WB to fourth order, Z, z and gB to zeroth order;
(b) WB to second order, Z to second order;
(c) WB to second, gB to second;
(d) WB to second, z to second order.

Then (b) contributes only to the abelian CRCR part,
while (c) and (d) should give the counterterms needed
to cancel the UV divergences we found in (a). Of course,
since WB to second order has two real gluons, that is two
AB operators, it gets two z factors, one depending on p
and the other on q. We list counterterms for each sector
separately.

(1) n∗n∗ sector. Although the Born term is contained in
the n∗n∗ sector only, we had to study the off-shell sectors
as well. The reason is the field renormalization matrix zβγ

which mixes all three sectors. The Born term to order g2

is

Bβρ(n∗n∗) =
1

p−q−
g2
Bn

∗
βn

∗
ρHAβ

B(p)Aρ
B(q),

where

H = Tr(tbtd)(e−iTp+ − 1)(e−iTq+ − 1)

× (e−iLp− − 1)(e−iLq− − 1). (34)

To order g4
R the operator (z−1)WB +(gB −gR)WB on the

right of (2) gives for the n∗n∗ sector the counter-term

W ct
βρ(n

∗n∗) = n∗
βn

∗
ρ

g2
R

p−q−
H

×
[
11
6
cgβγ − cnβ(nγ∗ − n∗ · p

n · p nγ)
]

× AR
γ (p)AR

ρ (q)

+ n∗
βn

∗
ρ

g2
R

p−q−
H

×
[
11
6
cgργ − cnρ(nγ∗ − n∗ · q

n · q nγ)
]

× AR
γ (q)AR

β (p)

− 2n∗
βn

∗
ρ

11
6
cH

g2
R

p−q−
AβR(p)AρR(q). (35)

We notice that the factor (11/6)c cancels out between the
wave function renormalization (two first terms) and the
coupling constant renormalization (last term). Hence, the
counter-term to order g4

R for the n∗n∗ sector is

W ct
βρ(n

∗n∗) = −4cn∗
ρn

∗
β

1
p−q−

H

+ 2c[n∗
βnρ

1
p−q+

+ n∗
ρnβ

1
q−p+

]H. (36)

(2) nn∗ sector.

W ct
βρ(nn

∗) = −4cnρnβ
1

p+q+
H

+ 2c
[
n∗

βnρ
1

p−q+
+ n∗

ρnβ
1

p+q−

]
H. (37)

(3) nn sector gives zero. The sum of (1) and (2) gives
exactly the counterterms needed to cancel (15), (22) and
(32). The complications with non-local Si and Ci diver-
gences were caused by the choice of the M–L gauge, not the
lightlike sides of the Wilson loop, as shown in AppendixC.
We certainly expected (a) of (6) to be gauge-invariant, but
in fact we find that the whole of the divergent part of Mβρ

is gauge-invariant.
We shall now explain how the field renormalization

matrix zβγ leaves this tensor structure unchanged. Let us
invoke the tensor structure for the amplitude in (7):

Mβρ = e′
βf

′
ρM. (38)
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This vanishes when contracted with pβ or qρ. Then it is
easy to see why zβγ does not change the structure. The
non-local structure in zβγ contains

nβ

(
n∗

γ − n∗ · p
n · p nγ

)
= −nβe

′
γ

p+
. (39)

When contracted with Mβρ the term (n · e′)/p+ = −2
becomes free of non-localities.

Although we have demonstrated multiplicative renor-
malizability of Wilson operators to order g4 in the M–L
gauge, the complexity of the actual calculation raises the
question of the usefulness of both, lightcone gauge and
Wilson operators, as fundamental variables in perturba-
tive QCD. The lightcone gauge has additional problems
for loops containing spacelike and/or timelike lines as ex-
plained in AppendixC.
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Appendix A

There are no transverse components in the Wilson oper-
ator as we have assumed in (4). Let us take one of the
characteristic integrals which appears in the graph with
one 3-gluon vertex in Fig. 7.

Zβ =
∫

dnk
2Kβ

k2(p − k)2k+
(e−iT (p−k)+ − e−iTk+)

× 1
(p − k)−

(e−ik−L − 1)(1 − e−i(p−k)−L)

= Pβ × M (A1)

We multiply both sides by the perpendicular momentum
Pβ , and write

2P · K = K2 − k+k− − (P − K)2 + (p − k)+(p − k)−
+ p+k− + p−k+, (A2)

Z · P = P 2 × M =
∫

dnk
(p − k)2 − k2 + p−k+ + p+k−

k2(p − k)2k+

× {e−iTp+(eiTk+ − 1)

− (e−iTk+ − 1) + (e−iTp+ − 1)}
× 1

(p − k)−
× {e−ip−L(ei(p−k)−L − 1) + e−i(p−k)−L − 1}. (A3)

In this form we can integrate each of the terms in (A3).
k+p− gives UV finite term as the integrals of the type

I=
∫

dnk
1

k2(p − k)2
eiTk+

1
(p − k)−

(e−i(p−k)−L − 1) (A4)

contain the oscillating factor eiTk+ which suppresses the
possible UV divergences. Let us denote by Y the contri-
bution from k−p+:

Y =
∫

dnk
p+k−

k2(p − k)2k+

× {e−iTp+(eiTk+ − 1) − (e−iTk+ − 1) + (e−iTp+ − 1)}
× 1

(p − k)−
× {e−ip−L(ei(p−k)−L − 1) + e−i(p−k)−L − 1}. (A5)

The factor (e−iTp+ − 1) gives only a UV finite term. Also
we can write

k−
(p − k)−

=
(k − p)− + p−

(p − k)−
= −1 (A6)

modulo UV finite terms. We change the variable p−k = k′
and use the argument analogous to (A4) but now with k+
and k− interchanged. The integral

A=
∫

dnk
1

k2(p − k)2
eik−L 1

(p − k)+
(e−i(p−k)+T − 1) (A7)

is UV finite due to the oscillating factor eik−L.
Therefore the UV divergent part of Y is

Y = p+(e−ip−L + 1)
∫

dnk
1

k2(p − k)2(p − k)+
× {e−iTp+(eiT (p−k)+ − 1) − (e−iT (p−k)+ − 1)}. (A8)

After the integration over k− using the formula∫
dnk

1
k2(p − k)2

= iπ2−(ε/2)Γ
( ε

2

)
(−p2 − iη)

−ε/2

×
∫ 1

0
dxx−ε/2(1 − x)−ε/2

,

where

k+ = p+x, (A9)

we obtain

Y = iπ2−(ε/2)Γ
( ε

2

)
(−p2 − iη)

−ε/2
(e−ip−L + 1)

× [(e−iTp+ − 1)Ci(p+T ) + i(e−iTp+ + 1)
× Si(p+T )]. (A10)

The remaining two integrals in (A3) we denote by E and
F .

E =
∫

dnk
1

k2k+

× {e−iTp+(eiTk+ − 1) − (e−iTk+ − 1) + (e−iTp+ − 1)}
×

(
1

(p − k)−

)
× {e−i(p−k)−L − 1 + e−ip−L(ei(p−k)−L − 1)}. (A11)
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The term (e−iTp+ −1) gives a vanishing contribution upon
the integration in the complex k+ plane:∫

dnk
1

k2k+
f(p−, k−) = 0, (A12)

because both poles lie in the same half plane with k+
regulated in the sense of Mandelstam [7]. Other terms have
no pole at k+ = 0. For the first (eiTk+ − 1) we close the
contour in the upper half plane and pick up a pole at k+ =
((K2 − iη)/k−)θ(−k−), while for the second (e−iTk+ − 1)
we close the contour in the lower half plane and pick up a
pole at k+ = ((K2 − iη)/k−)θ(k−).

E = iπe−iTp+

∫ 0

−∞
dk−

×
∫

d2−εK
1

K2 − iη
(eiT ((K2−iη)/k−) − 1)

× 1
(p − k)−

{e−i(p−k)−L − 1 + e−ip−L(ei(p−k)−L − 1)}

− iπ
∫ ∞

0
dk−

∫
d2−εK

1
K2 − iη

(1 − e−iT (K2−iη)/k−)

× 1
(p − k)−

× {e−i(p−k)−L − 1 + e−ip−L(ei(p−k)−L − 1)}. (A13)

In the case of the lightlike Wilson loop we can omit the
tadpoles in K2 of the form∫

d2−εK
1

K2 − iη
f(k−, p−) = 0. (A14)

This step is not permitted for the spacelike or timelike
lines (we explain why in AppendixC). Using the integral

T =
∫

d2−εK
1

K2 − iη
e−iT ((K2−iη)/k−)

= −2
ε
π1−(ε/2)

(
T

k−

)ε/2

eiπε/4, (A15)

and evaluating the remaining k− integrals, we obtain

E =
2
ε
iπ2−(ε/2)eiπε/4T ε/2p−−ε/2

×
{

2
ε
(e−iTp+ − 1)(e−ip−L + 1)

+ (e−iTp+ − 1)

× [(e−ip−L + 1)ci(p−L) + i(e−ip−L − 1)si(p−L)]

− iπ(e−ip−L − 1)
}
. (A16)

The non-capitalized ci and si functions are integrated co-
sine and sine commonly defined in the literature. The last
integral is

F =
∫

dnk
1

(p − k)2k+
(e−iTk+ − e−iT (p−k)+)

× 1
(p − k)−

(e−ik−L − 1)(1 − e−i(p−k)−L). (A17)

?p

q

Fig. 19. The graph with two 3-gluon vertices which in the
Feynman gauge contains no UV divergences. The same graph
in the M–L gauge contains double divergences and single di-
vergences with non-local Ci and Si functions

We use the same methods as for the integral E, but here
the auxiliary formula is∫

d2−εK
1

p+ +
K2 − iη

k−

e−iT (p++(K2−iη)/k−)

= −π1−(ε/2)k−1−(ε/2)Ei(−iTp+)

= −π1−(ε/2)k−1−(ε/2)[ci(p+T ) − isi(p+T )]; (A18)

we get

F = −iπ2−(ε/2)Γ
( ε

2

)
(−p+p− − iη)−ε/2(e−iTp+ − 1)

× {(e−ip−L + 1)Ci(p−L) + i(e−ip−L − 1)Si(p−L)}
+ iπ2−(ε/2)Γ

(
− ε

2

)
Lε/2(e−ip−L + 1)

×
{
(e−iTp+ − 1)

[
ci(p+T ) +

2
ε
p+

−ε/2 − γ

]
+ i(e−iTp+ + 1)si(p+T ) + iπe−iTp+

}
+ iπ2−(ε/2)Lε/2p+

−ε/2(e−iTp+ + 1)(e−ip−L − 1)

× iπ
ε
. (A19)

The sum of the pole parts in Z · P is

Z · P = Y + (E + F ) = 0; (A20)

hence there are no UV divergences in the transverse mo-
mentum Pβ .

Appendix B

As an example of the complications caused by using the
M–L gauge, let us take the diagram shown in Fig. 19 which
in the Feynman gauge contains no ultra-violet divergences.
In the M–L gauge the UV divergent part of this graph is

Gβρ = −2g4CGTr(tbtd)nβnρπ
2−(ε/2)(2π)−n

×
{

8
ε2

1
q+p+

e−iTq+(e−iTp+ − 1)(e−ir−L + 1)

− 8
ε2

1
q+r+

(e−iTr+ − 1)(e−ir−L + 1)
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+
2
ε

1
q+p+

e−iTq+(e−iTp+ − 1)

× [(e−ir−L + 1)(Ci(r−L) + 2 ln(TLµ2) + iπ + 2γ)

+ i(e−ir−L − 1)Si(r−L)]

− 2
ε

1
q+r+

(e−iTr+ − 1)

× [(e−ir−L + 1)(Ci(r−L) + 2 ln(TLµ2) + iπ + 2γ)

+ i(e−ir−L − 1)Si(r−L)]

+
2
ε

1
q+p+

e−iTq+

× [(e−ir−L + 1)(Ci(r−L) − Ci(q−L) − Ci(p−L))

+ i(e−ir−L − 1)(Si(r−L) − Si(q−L) − Si(p−L))]

− 4
ε

1
r+

2 (e−ir−L + 1)

× [(e−iTr+ + 1)Ci(r−L) + i(e−iTr+ − 1)Si(r−L)]
}

− 8
ε

1
r+r−

gρβg
4CGTr(tbtd)π2−(ε/2)(2π)−n

× {(e−iTr+ + 1)

× [(e−ir−L + 1)Ci(r−L)

+ i(e−ir−L − 1)(Si(r−L) − π)] + 2iπ(e−ir−L − 1)}
+

4
ε
g4CGTr(tbtd)n∗

βnρπ
2−(ε/2)(2π)−n 1

q+r−
× {(e−iTq+ − 1)

× [(e−ir−L + 1)(Ci(p−L) − Ci(q−L))

+ i(e−ir−L − 1)(Si(p−L) − Si(q−L) + π)]

− (e−ir−L + 1)
× [Ci(r−L) − Ci(p−L) + Ci(q−L)]

− i(e−ir−L − 1)[Si(r−L) − Si(p−L) + Si(q−L)]}
− 4

ε
g4CGTr(tbtd)n∗

ρnβπ
2−(ε/2)(2π)−n 1

p+r−
e−iTq+

× {(e−iTp+ − 1)[(e−ir−L + 1)Ci(r−L)

+ i(e−ir−L − 1)(Si(r−L) − π)]

+ (e−ir−L + 1)[Ci(p−L) − Ci(q−L) + Ci(r−L)]

+ i(e−ir−L − 1)[Si(p−L) − Si(q−L) + Si(r−L)]}.
(B1)

Appendix C

In the case of Wilson loops with spacelike and/or timelike
lines strict application of dimensional regularization is not
possible. As an example let us take the self-energy type of
graph in the triangle Wilson loop with one spacelike1 and
two lightlike sides shown in Fig. 20.

Wβρ = Cβρ

∫
dnk

1
k2 + iη

k−
k+ + iωk−

1
k3p3

1 This feature of the M–L prescription was noticed already
in A. Andraši, hep-th 9411117, unpublished.

@
q

p

Fig. 20. The triangle Wilson operator. The base is along the
spacelike vector vβ of length L, while the sides are along the
lightlike vectors n and n∗ of length L

2

×
{

1
(p − k)3

e−ip3L(ei(p−k)3L − 1)

+
1

(p + k)3
(e−i(p+k)3L − 1)

}
= CβρW, (C1)

where

Cβρ = −ig4vβnρTr(tbtd)(2π)−n 1
q+

× (eiq+L/2 − 1)e−iq−L/2. (C2)

There are two poles in the upper half complex k0 plane.
(a)

k2 + iη = 0,
k0 = −k + iη.

(b)

k+ + iωk− = 0,
k0 = −k3 + 2iωk3θ(k3). (C3)

Let us take the first part of W with the 1/(p−k)3 denom-
inator. After the k0 integration it gives

W1 = 2iπe−ip3L

∫
dk3d2−εK

1
2k

k + k3

k − k3 + iω(k + k3)

× 1
k3p3(p − k)3

× {cos(p − k)3L − 1 + i sin(p − k)3L}
+ 2iπe−ip3L

∫ ∞

0
dk3

∫
d2−εK

2k3

K2 + 4iωk2
3 − iη

× 1
k3p3(p − k)3

× {cos(p − k)3L − 1 + i sin(p − k)3L}. (C4)

Naively, one would strictly apply the rules of dimensional
regularization and set the second integral to zero as a tad-
pole in the perpendicular momentum K. However, after
the introduction of polar coordinates,

k3 = k cos θ = kx,
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d3−εk = k2−εdk(1 − x2)−ε/2dx
∫

dΦ,∫
dΦ =

2π1−ε/2

Γ
(
1 − ε

2

) (C5)

and integration over k, the first integral leads to an inte-
gral which is not defined for any ε.

Therefore we have to keep ω in the integrand and it be-
comes a part of the gauge. We can choose two ways. Either
we evaluate integrals separately in terms of the spurious,
“ambiguous” terms of the form ω−ε/2ε−2 dictated by the
tadpole

WT =
∫

d2−εK
1

K2 + 4iωk2
3 − iη

= π1−(ε/2)Γ
( ε

2

)
ω−ε/22−εe−iπε/4k−ε

3 , (C6)

or we transform the tadpole into polar coordinates

WT =
∫ ∞

0
dkk−ε

∫ 1

0
dx(1 − x2)−ε/2

× 1
1 − x2 + 4iωx2

∫
dΦ, (C7)

and sum it up with the first integral in (C4) leading to

W1 = −iπe−ip3Lp−1−ε
3

× [ci(p3L) +
1
ε

+ isi(p3L) + iπ]

×
∫

dΦ
∫ 1

0
dx(1 − x2)−ε/2xε−2

×
[

2(1 + x2)
1 − x2 + 2iω(1 + x2)

− 4x
1 − x2 + 4iωx2

]

+ (iπ)2e−ip3Lp−1−ε
3

∫ 1

0
dx(1 − x2)−ε/2xε−2

× 1 − x

1 + x + iω(1 − x)

∫
dΦ. (C8)

We notice how crucial the contribution from the tadpole

− 4x
1 − x2 + 4iωx2

is for the regularization of the pole at x = 1. Only after
the addition of the tadpole we can set ω = 0 in (C8) and
evaluate the integrals in the strip 1 < ε < 4. In the same
way we evaluate the second part of (C1) with 1/(p + k)3
denominator.2

Thus we obtain the result for (C1):

Wβρ = −Cβρ
4iπ2−(ε/2)

Γ
(
1 − ε

2

)p−1−ε
3 2−ε

[
2
ε

+ 1
]

×
{
(e−ip3L − 1)

(
ci(p3L) +

1
ε

)

+ i(e−ip3L + 1)
(
si(p3L) +

π

2

)}
. (C9)

This graph in the Feynman gauge contains only simple
single poles. Hence, the funny non-local sine and cosine
divergences and the double pole are caused by the choice
of the M–L gauge, not the lightlike sides of the loop.
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